DEM wikiPrevious


[This page is prepared in Chinese, and will be part of a book aiming at beginners of DEM.]


应力 (Stress)

基于连续性介质理论,材料的动量守恒方程可表示为(忽略体力及加速度项)

\begin{align} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} = \boldsymbol{0} \end{align}

采用爱因斯坦求和约定,上式可写作

\begin{align} \nabla_i \sigma_{ij} = 0_j \end{align}

利用动量守恒方程可得等式

\begin{align} \nabla_i (\sigma_{ij} x_k) = \nabla_i \sigma_{ij} x_k + \sigma_{ij} \nabla_i x_k = \nabla_i \sigma_{ij} x_k + \sigma_{ij} \delta_{ik} = \sigma_{jk} \end{align}

针对某个颗粒 p,其内部应力的积分可计算为

\begin{align} \int \sigma_{jk} ~\text{d} \Omega = \int \nabla_i (\sigma_{ij} x_k) ~\text{d} \Omega = \int n_i (\sigma_{ij} x_k) ~\text{d} \Gamma = \int n_i (\sigma_{ij} x_k) ~\text{d} \Gamma = \int f_j x_k ~\text{d} \Gamma = \sum^c f_j x_k \end{align}

其中,c 表示该颗粒的所有接触、f_j 表示接触力、 x_k 表示接触位置。进而,利用颗粒在接触力作用下的静力平衡公式

\begin{align} \sum^c f_j x_k^p = (\sum^c f_j) x_k^p = 0 \end{align}

可得

\begin{align} \int \sigma_{jk} ~\text{d} \Omega = \sum^c f_j x_k = \sum^c f_j (x_k - x_k^p) = \sum^c f_j b_k \end{align}

其中,x_k^p 为颗粒质心、b_k 为由接触点指向颗粒质心的向量(branch vector)。

针对代表单元体,其域内的平均应力可由其内部所有颗粒内部的应力积分,再除于代表单元体体积得到,表达为

\begin{align} \bar{\sigma}_{jk} = \frac{1}{V} \int \sigma_{jk} ~\text{d} \Omega = \sum^c (f_j b_k^p - f_j b_k^q) = \sum^c f_j d_k \end{align}

其中,c 为代表单元体内的所有接触、d_k 表示颗粒质心相对位置矢量。

应变 (Strain)

假设单元变形梯度(deformation gradient)为 \boldsymbol{F},则变形后,颗粒 p(初始位置 \boldsymbol{X}^p)与 颗粒 q(初始位置 (\boldsymbol{X}^q)质心相对位置矢量 \boldsymbol{d} 可计算为

\begin{align} d_i = F_{ij} (X^p_j - X^q_j) \end{align}

本构张量 (Constitutive tangent moduli)

\begin{align} \text{d} f_i = k_n (\text{d} F_{mn}) d_n n_n n_i + k_t (\text{d} F_{mn}) d_n t_n t_i \end{align}
\begin{align} C_{ijkl} = \frac{\partial \sigma_{ij}}{\partial F_{kl}} = \sum^c k_n n_i d_j n_k d_l + k_t t_i d_j t_k d_l \end{align}

参考文献 1 2 3 4 5


DEM wikiPrevious


参考文献


  1. R. I. Borja and J. R. Wren. Micromechanics of granular media Part I: Generation of overall constitutive equation for assemblies of circular disks. Computer Methods in Applied Mechanics and Engineering, 127(1-4):13–36, November 1995. doi:10.1016/0045-7825(95)00846-2

  2. K. Bagi. Stress and strain in granular assemblies. Mechanics of Materials, 22(3):165–177, March 1996. doi:10.1016/0167-6636(95)00044-5

  3. J. R. Wren and R. I. Borja. Micromechanics of granular media Part II: Overall tangential moduli and localization model for periodic assemblies of circular disks. Computer Methods in Applied Mechanics and Engineering, 141(3):221–246, February 1997. doi:10.1016/S0045-7825(96)01110-3

  4. N. P. Kruyt and L. Rothenburg. Statistical theories for the elastic moduli of two-dimensional assemblies of granular materials. International Journal of Engineering Science, 36(10):1127–1142, August 1998. doi:10.1016/S0020-7225(98)00003-2

  5. S. Luding. Micro–macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41(21):5821–5836, October 2004. doi:10.1016/j.ijsolstr.2004.05.048